
Heterogeneous Similarity Graph Neural Network on
Electronic Health Records

Zheng Liu∗, Xiaohan Li∗, Hao Peng†, Lifang He‡, Philip S. Yu∗
∗University of Illinois at Chicago, Chicago, IL, USA

{zliu212, xli241, psyu}@uic.edu
†Beihang University, Beijing, China

penghao@act.buaa.edu.cn
‡Lehigh University, Bethlehem, PA, USA

lih319@lehigh.edu

Abstract—Mining Electronic Health Records (EHRs) becomes
a promising topic because of the rich information they contain.
By learning from EHRs, machine learning models can be built
to help human expert to make medical decisions and thus
improve healthcare quality. Recently, many models based on
sequential or graph model are proposed to achieve this goal.
EHRs contain multiple entities and relations, and can be viewed
as a heterogeneous graph. However, previous studies ignore the
heterogeneity in EHRs. On the other hand, current heterogeneous
graph neural networks cannot be simply used on EHR graph
because of the existence of hub nodes in it. To address this issue,
we propose Heterogeneous Similarity Graph Neural Network
(HSGNN) to analyze EHRs with a novel heterogeneous GNN.
Our framework consists of two parts: one is a preprocessing
method and the other is an end-to-end GNN. The preprocessing
method normalizes edges and splits the EHR graph into multiple
homogeneous graphs while each homogeneous graph contains
partial information of the original EHR graph. The GNN takes
all homogeneous graphs as input and fuses all of them into
one graph to make prediction. Experimental results show that
HSGNN outperforms other baselines in the diagnosis prediction
task.

I. INTRODUCTION

The accumulation of large-scale Electronic Health Records
(EHRs) provides us with great opportunity of deep learning
applications on healthcare. Recently, many deep learning mod-
els have been applied to medical tasks such as phenotyping
[1], [2], medical predictive modeling [3], [4] and medication
recommendation [5].

Generally, raw EHRs consist of multiple kinds of features
of patients, including demographics, observations, diagnoses,
medications, and procedures ordered by time. For example,
Fig.1 shows an example of an EHR graph with two patients
and three visit records. In Fig.1, there are two patients p1 and
p2, where p1 has visited the medical provider twice and p2 has
visited once (with timestamp recorded). During the visit some
diagnoses or medications may occur to the patient. All medical
concepts such as diagnosis, medications and procedures are
medical codes and scientists can easily track them through
some medical ontology. Because one patient can have multiple
visits recorded, EHR can be viewed as sequential historical

Patient 1 Patient 2

1st visit 2nd visit 1st visit

Benzodiazepines

Insomnia

Palpitation

Headache

Ibuprofen

 Patient
 Visit
 Diagnosis
 Medication

Heterogeneous EHR Graph

Fig. 1: An example of heterogeneous EHR graph.

records for each patient. Moreover, because of the variety of
medical codes and their relations, EHR can be viewed as a
heterogeneous graph with multiple types of nodes and edges.

EHR analysis plays an important role in medical research
and can improve the level of healthcare. By learning from
EHRs, scientists can either discover useful facts or build
intelligent applications. For example, the prescriptions in
EHRs can help make medication recommendations [5], and
the phenotypes of patients indicate the distribution of cohorts
[6]. With Artificial Intelligence (AI) technologies, scientists
can build applications to provide useful suggestions to doctors,
or let patients understand their physical conditions better.

To build such a medical AI application, a key issue is to
learn effective representations for each medical concept and
patient [7], [8]. However, there are two challenges of learning
such representations. One is data insufficiency. Due to the the
privacy policy and the expense of collecting data, the volume
of an EHR dataset is generally smaller than image or language
datasets. Therefore, it is difficult for deep learning models
designed for images or languages tasks to process EHR data.
The other is the heterogeneity of EHR. EHR is of complex
structure and contains multiple relationships. Only when all
relations are properly used then the model can achieve a
satisfactory performance.978-1-7281-6251-5/20/$31.00 ©2020 IEEE

Previously, many models regard EHRs as sequences and use
sequential models such as RNNs to analyze EHR [9], [10],
[11], [12], [13]. These methods use historical information to
predict the next-period situation of a patient. However, sequen-
tial models are not enough to capture structural information
and need a large amount of data to train.

To address these issues, some other approaches take EHR
as a graph shown in Fig.1, and then use graph neural networks
(GNNs) to learn embedding vectors for each node [14], [15],
[16], [17]. Among them, GRAM [16] proposes the first graph-
based model that can integrate external hierarchical ontologies
when generating results. MiME [17] learns multi-level repre-
sentations of medical codes based on EHR data in a hier-
archical order. Graph convolutional transformer (GCT) [15]
learns the medical representations together with the hidden
causal structure of EHR using the “pre-training&fine-tuning”
procedure. Compared with sequential models, these graph-
based models are more robust to insufficient data because of
the use of structural information: the model can use neighbor
information to complete missing entries in the dataset.

As the above GNN models are designed only for homo-
geneous graphs, they fail to take all kinds of medical codes
into account. EHR data contains multiple kinds of medical
codes and relations, so it is naturally heterogeneous. To
capture multiple relations in the graph, heterogeneous graph
neural networks [18], [19], [20] are necessary in the EHR
analysis. Basically, these models take a heterogeneous graph
as input and process different kinds of nodes or meta-paths[21]
respectively.

However, applying these models on EHR graphs directly
can cause very low performance because of the hub nodes with
high visibility [22]. For example, if an EHR graph contains
the “gender” information, and then all patient nodes would
link to either “male” or “female” nodes. If we don’t conduct
a normalization on these links, these two gender nodes would
strongly influence all other nodes. After applying heteroge-
neous GNNs, all other nodes in the graph will eventually
learn the same representations as either “male” or “female”
nodes. This phenomenon is similar to the over-smoothing [23]
problem. Over-smoothing means after applying GNNs with
multiple layers, all node embeddings become close and finally
indistinguishable. Some studies [24] indicate the reason of
over-smoothing is the existence of noise in the graph, which
can be supported in our case: since gender is not the most
informative attribute of a patient (containing too much noise),
introducing it into the graph does not always helpful to the
prediction task.

To address this issue, we propose Heterogeneous Similarity
Graph Neural Network (HSGNN), a framework using GNN to
analyze EHR graphs. It consists of two parts: the preprocessing
step and the end-to-end model. In the preprocessing step, we
first construct the heterogeneous EHR graph, and then split it
into multiple homogeneous subgraphs according to the weight
assigned to each edge. By doing so, we eliminate the noise in
the original heterogeneous graph while preserving its structural
information. After preprocessing step, each subgraph contains

partial information of the original graph. Then in the end-to-
end model, we try to combine all subgraphs together into one
integrated homogeneous graph Ameta so that it can be input
into any general GNN layers to make downstream predictions.
Inspired by [15], we set all weights in Ameta as trainable
variables but not fixed values. It means all weights in Ameta

are randomly initialized before training, and are optimized
during the model training process.

Compared with previous models, HSGNN has these innova-
tions: First, to the best of our knowledge, this is the first study
that uses heterogeneous graph structure to represent EHR
data, which can preserve the most information. Second, in the
preprocessing step, HSGNN uses similarity values to represent
the weights in the graph. This method is proved effective in the
experiments to reduce over-smoothing. Third, we use trainable
weights and construct a new graph in HSGNN, which can
reveal true relationship between each nodes.

To demonstrate the advantages of HSGNN, we evaluate
its performance on the MIMIC-III dataset. On the diagnosis
prediction task, HSGNN outperforms all other baseline ap-
proaches and achieves state-of-the-art performance. We also
prove the effectiveness of using similarity values by comparing
HSGNN with a variant that uses PathCounts as graph
weights. Finally, we visualize the structure of learned graph
to prove that HSGNN can learn a new graph with higher
quality. Conclusively, we make the following contributions in
this paper:

• We propose a novel framework HSGNN, which can learn
informative representations for medical codes and make
predictions for patients in EHR.

• We use the similarity subgraphs generated from original
heterogeneous graph as input, which is shown effective
to improve the performance of prediction.

• We propose an end-to-end model that can jointly learn
high-quality graph embeddings based on similarity sub-
graphs and make accurate predictions .

• Experimental results show the superiority of our proposed
model on the diagnosis prediction task. Experiments also
prove the effectiveness of using similarity subgraphs and
the quality of learned graph embeddings.

The code of our proposed HSGNN is available at https:
//github.com/ErikaLiu/HSGNN.

II. RELATED WORKS

Since EHR analysis is an interdisciplinary topic, many
studies are related to our work. In this section, we only choose
the most representative and inspiring studies. These studies
mainly focus on four aspects: 1. Graph Neural Networks,
2. GNN-based EHR analysis, 3. heterogeneous graph neural
networks and 4. some studies of the nature of graph.

A. Graph Neural Networks

Currently, Graph Neural Networks (GNNs) have been
widely explored to process graph-structure data. Motivated
by convolutional neural networks, Bruna et al. [25] propose
graph convolutions in spectral domain. Then, Kipf and Welling

https://github.com/ErikaLiu/HSGNN
https://github.com/ErikaLiu/HSGNN

[26] simplified the previous graph convolution operation and
designed a Graph Convolutional Network (GCN) model. Be-
sides, to inductively generate node embeddings, Hamilton
et al. propose the GraphSAGE [27] model to learn node
embeddings with sampling and aggregation functions. All
these models have shown their performance on many tasks
[28], [29], [30], [31], [32].

B. GNN-based EHR analysis

Previously, many studies use RNNs to analyse EHR [9],
[10], [11]. However, with the improvement of graph neural
networks [26], [33], [27], many approaches develop GNNs to
analyse EHR [14], [15], [16], [34]. These models can capture
structural information from raw EHR and thus outperform
previous approaches.

Among these models, GRAM [16] and KAME [14] use
GNNs to process external hierarchical ontologies. They can
learn embeddings for medical codes in the ontologies and
then these embeddings can be used for downstream tasks.
MiME [17] and GCT [15] assume that there are some latent
causal relations between different kinds of medical codes
in EHR. Based on this assumption, MiME learns multilevel
representations in a hierarchical order and GCT can jointly
learn the hidden causal structure of EHR while performing
predictions. Above studies only focus on homogeneous graphs,
while raw EHRs contain multiple kinds of medical codes and
thus are naturally heterogeneous. This fact provides us with
opportunities to model EHR with heterogeneous graphs.

C. Heterogeneous Graph Neural Networks

According to [35], a heterogeneous information network
(HIN) is an information network with multiple kinds of nodes
and edges. To process HIN, a key issue is to deal with
the heterogeneity of the network. Here we introduce some
methods in the previous studies to eliminate the heterogeneity
of the network.

HAN [18] is the first study using graph attention network to
process heterogeneous graphs. MAGNN [20] is another recent
study proposing aggregators to make inductive learning on
heterogeneous graphs. Both of these two models use meta-path
when processing heterogeneous graphs since it can capture
meaningful patterns in the graph. Also, both of their models
consists of two modules: the meta-path level GNN and the
node level GNN, which can aggregate node features hierar-
chically. HetGNN [19] proposes another method to eliminate
the heterogeneity, which uses random walk and type-based
aggregators. However, in the experiment we find that these
methods do not perform ideally because they did not deal with
nodes with different visibility properly.

D. Over-smoothing and Node Visibility

According to [23], after applying GNN with multiple layers,
the derived node embeddings will become closer to each other
and finally indistinguishable. This is called over-smoothing
and [23] is the first work discover this phenomenon.

TABLE I: Notations

Notation Explanation

ni Node i in the heterogeneous EHR graph.
φ(·) Mapping function to retrieve the type of node.

PathCountp(·, ·) or PCp(·, ·) PathCount w.r.t meta-path p.
SPSp(·, ·) Symmetric PathSim w.r.t meta-path p.

Ak The k-th input adjacency matrix.
F The input node features.
K Number of meta-paths.
N Number of nodes in the graph.

Ameta The fused adjacency matrix.
Fmeta The aggregated node features.
w or W Parameters used to derive Ameta.

Ω Parameters used to derive W .
meta GNNk(·, ·) meta GNN module for the k-th meta-path.

AGGREGATORF (·) Aggregation function to derive Fmeta.

Recently, the causes of this phenomenon are still being
investigated and some studies are trying to resolve it. For ex-
ample, [36] discovers row-level and col-level over-smoothing
because information wrongly spread through nodes and fea-
tures. Another study [24] attribute over-smoothing to the noise
in the network. Nevertheless, these different explanations may
direct to the same reason. That is, the structural information of
the graph may not accurate enough, making information spread
to wrong nodes or wrong features through GNN. Therefore,
correct the “wrong edges” in the graph is a possible way to
overcome over-smoothing.

On the other hand, many traditional studies focus more on
the nature of graph [21], [22]. These research propose the
concept “node visibility” to measure the influence of one node
on the whole graph. Generally, the degree of the node can be
used to measure the visibility of it. If one node have many
neighbors, it can influence more other nodes and making itself
“visible” in the whole graph. In GNNs, the existence of these
highly visible nodes is one reason of over-smoothing because
they can result in multiple nodes having similar embeddings.

III. METHODS

HSGNN consists of two parts: one is preprocessing step that
splits the heterogeneous graph into multiple subgraphs; and the
other is an end-to-end graph neural network that takes multiple
graphs as input. In the first part, we introduce the definition of
heterogeneous EHR graph, meta-path and symmetric PathSim
(SPS). In the second part, we provide the forward propagation
rules of our model. In this section we use the EHR with the
same structure as Fig.1 to introduce our model.

A. Similarity Subgraph Construction via Meta-path

Since the heterogeneous EHR graph consists of multiple
types of node and edge, traditional GNN cannot process it
directly. A approach is to process each node in the graph
according to the node types[19]. However, the links between
different types of nodes can form some unique patterns and
may possess specific meaning. Therefore, we introduce meta-
path to process the heterogeneous graph and then calculate
similarities between nodes along with each meta-path.

Heterogeneous EHR Graph

 Patient
 Visit
 Diagnosis
 Medication

meta-path
V D V

meta-path
M V

meta-path

P

2/4

2/3

2/3

4/4 2/4
2/3

Similarity Subgraph Construction via Meta-path

Symmetric
PathSim

… …

HSGNN

Preprocessing

End-to-end Model

Input

D MV 2/3 2/5

Patient 1

Patient 2

1st visit

2nd visit 1st visit

Benzodiazepines

Insomnia

Palpitation

Headache

Ibuprofen

Similarity
Subgraphs

Node Feature

…

A1

A2

An

meta-GNN2

meta-GNN1

meta-GNNn

…

…

GNN ŷ

Learn an new graph
based on all subgraphs

Attention

A1

A2

…

An

Attention

Fig. 2: The proposed HSGNN framework. Heterogeneous EHR graph is preprocessed by calculating SPS along with each meta-path (the
dash box) and then input into the end-to-end model (the solid box). Here we take meta-path V-D-V as an example to explain SPS. The 1st
and 2nd visits of patient 1 have one common diagnosis in total, and therefore the numerator of similarity between them is 1*2=2. Besides,
they have 4 diagnosis neighbors in total, and thus the denominator is 4. The similarity of these two nodes along with meta-path V-D-V is
1/2.

a) Heterogeneous EHR Graph: As shown in left part
of Fig. 1, a heterogeneous EHR graph consists of medical
information from all patients. There are four kinds of nodes
in the graph, patient c, visit v, diagnosis d and medication
m. Formally, we use S = C + V + D + M to represent
the set of all nodes in the graph, where C, V , D and M
correspond to sets of patients, visits, diagnoses and medi-
cations. For each node n ∈ S, we also define a mapping
φ(n) ∈ {“C”, “V ”, “D”.“M”} to find its type.

b) Meta-path: A meta-path p = t1t2 · · · tn is a sequence
where t ∈ {“C”, “V ”, “D”.“M”}. It can represent a pattern
of node types in a given path. For example, a meta-path
”V DV ” denotes the pattern of “visit node - diagnosis node -
visit node” in the heterogeneous graph, and the path “patient
1’s 1st visit - headache - patient 2’s 1st visit” is an instance
of this meta-path.

c) PathCount: Suppose we have two nodes ni, nj ∈ S
and a meta-path p = t1t2 · · · tn where φ(ni) = t1 and φ(nj) =
tn. The PathCount (shortened as PC) of ni, nj w.r.t. p is a
function of the number of meta-path instances between node
pairs. For example, in Fig. 2 the PC under mata-path “DVM”
between node pair (“headache”,“benzodiazepines”) is 2, since
they have 2 common visit neighbors.

d) Symmetric PathSim (SPS): Inspired by [21], we
propose the symmetric PathSim (SPS) used to measure the
similarity of a node pair (ni, nj) under a specific meta-path p
in the heterogeneous graph.

SPSp(ni, nj) =
PCp(ni, nj) + PCp(nj , ni)

PCp(ni, ni) + PCp(nj , nj)
. (1)

Basically, when the PC between two nodes is higher, these
two nodes tend to have a stronger relation. However, some
nodes may have higher degree but are less important. For
example, a node denoting gender “female” may link to half
of the patient nodes in the graph, but the effect of gender
on medication is much less than the effect of diagnosis. To

eliminate the influence of nodes with high visibility (degree)
and low importance, SPS normalizes the PC with the sum of
ni and nj’s self loop count. SPS is symmetric, which means
SPSp(ni, nj) = SPSp(nj , ni).

In the preprocessing step, we construct the heterogeneous
EHR graph and calculate the similarities of all node pairs un-
der a group of meta-paths P = {p1, p2, · · · pK} (the similarity
of two nodes is set to 0 if their node types are not applicable
to the mata-path). After this step, we can obtain a series
of symmetric similarity matrices A = {A1,A2, · · · ,AK}
where K is both the number of meta-paths and the number of
similarity matrices. The size of each matrix Ai inA is N ×N ,
where N = |S| is the number of nodes. In this way, the
heterogeneous graph is split into multiple homogeneous graphs
and each homogeneous graph contains partial information of
the original graph.

B. Heterogeneous Similarity Graph Neural Network

The solid box in Fig. 2 shows the architecture of our
proposed HSGNN. The preprocessing step derives multiple
homogeneous graphs with meta-path and then we take them
as inputs of HSGNN. The primary goal of HSGNN is to fuse
the homogeneous graphs into one graph Ameta containing true
relations between each node pair. Then, Ameta can be used
for later general GNN layers such as Graph Convolutional
Network (GCN) [26] or for other downstream tasks. To
achieve this goal, suppose the initial node feature matrix is
F and the K input graphs are A = {A1,A2, · · · ,AK}, here
we propose several variants of HSGNN.

1) Simply Weighted Sum: A straightforward approach is to
use weighted sum:

Ameta =

K∑
k=1

wkAk (2)

P1
_

1s
t V

isi
t

P2P1

P1
_

2n
d

Vi
sit

P2
_

1s
t V

isi
t

In
so

m
ni

a
Pa

lp
ita

tio
n

H
ea

da
ch

e
Be

nz
od

ia
ze

pi
ne

s
Ib

up
ro

fe
n

P1_1st Visit

P2

P1

P1_2nd Visit

P2_1st Visit

Insomnia

Palpitation

Headache

Benzodiazepines

Ibuprofen

 Patient
 Visit
 Diagnosis
 Medication

Ameta

human-medical code relationship
(update for new patients)

medical code-medical code relationship
(fixed after training)

human-human relationship
(set as 0s)

Fig. 3: A dissection of Ameta.

where wk is a trainable scalar weight of matrix Ai and∑K
k=1 wk = 1. An advantage of this approach is its simplicity.

However, this method assumes the effect of one meta-path
keeps constant over all nodes in the graph, regardless the
uniqueness of each node. For example, to predict the condition
of a patient, doctors may rely on different medical codes when
making decisions. Since medical codes correspond to different
meta-paths, we need to adjust weight scalars on each node pair.

2) Attention Sum: We have a node feature matrix F as the
input, and it can help us learn the proper weights of each
graph. Since we want to assign a unique weight for each node
pair under each meta-path, the weight tensor can be denoted
as W ∈ [0, 1]K×N×N and each element wkij in it means the
attention weight under node pair (ni, nj) on the k-th meta-
path. Similarly, we need to make sure

∑K
k=1 wkij = 1.

We adopt a one-layer feed forward neural network to
calculate the attention value wkij . The neural network takes
two node features fi and fj ∈ F as the input, and outputs the
weight of this node pair on all graphs. Formally, we have:

wk,i,j = softmaxk(attij) =
exp(σ(ωT

k [fi||fj]))∑K
l=1 exp(σ(ωT

l [fi||fj]))
. (3)

In Eq. (3), fi and fj are feature vectors of node ni
and nj and || denotes concatenation operation. Ωatt =
{ω1;ω2; · · · ;ωK} is the parameter set of the neural network.
After obtaining wkij , we can get Ameta:

Ameta =

K∑
k=1

Wk ◦Ak (4)

where Wk means the k-th N×N matrix in W and ◦ means
element-wise multiplication.

This equation adjusts personalized weights for different
node pairs based on node features. However, this approach
fails to improve the performance in the experiments. The
reason is that, the node feature F we use in the experiments is
not informative, and thus it can introduce noise into the model,
and prevent it from learning meaningful attention weights. To
address this issue, we need to let the node features firstly learn

from A, and then use them to generate meaningful attention
weights.

3) Aggregated Attention Sum: After learning from A to
obtain a more informative node feature matrix Fmeta, we use
Fmeta to generate the attention weights of graph aggregation.
Motivated from [18], in this step we apply GNN on each graph
to obtain multiple features for each node. Formally, for k ∈
{1, 2, · · · ,K} we have:

F
(0)
k = meta GNNk(F ,Ak) (5)

where meta GNN can be any kind of GNN layers. In the
next step, to learn the node feature matrix Fmeta, we use

Fmeta = AGGREGATORF ([F
(0)
1 ;F

(0)
2 ; · · · ;F (0)

K]), (6)

where AGGREGATORF is the aggregation function,
which can be Graph Attention Network (GAT) [33]. Here we
can also use some other operations such as concatenate or
average F

(0)
1 ,F

(0)
2 , · · · ,F (0)

K together.
When we get the Fmeta, we can use Eq. 3 to learn the

attention weights on graphs:

wk,i,j = softmaxk(metaattij) =
exp(σ(ωT

k [f
meta
i ||fmeta

j]))∑K
l=1 exp(σ(ωT

l [f
meta
i ||fmeta

j]))
.

(7)

Many kinds of operations and aggregators can be used as
AGGREGATORF . Here we provide several options which
are compared in the experiments. Suppose previously we
obtain K node feature matrices F

(0)
1 ,F

(0)
2 , · · · ,F (0)

K , we
propose the following aggregation functions in our model.

• Mean operation. That is,

Fmeta =

K∑
k=1

F
(0)
k /K (8)

.
• Concatenation operation. That is,

Fmeta = CONCAT ([F
(0)
1 ;F

(0)
2 ; · · · ;F (0)

K]) (9)

.

After obtaining Fmeta and Ameta, we use general GNN
layers such as GCN [26] and GAT [33] to derive final
predictions.

C. Quick Inference When New Records Coming

Basically, HSGNN needs all nodes in the graph to present
during training and thus is transductive. According to [27],
transductive GNN cannot handle new nodes and edges without
re-training. However, there is a special characteristic of EHR
graph: the number of all medical code nodes, such as diagnosis
node and medication node, keep almost constant in all EHR
graphs. The total number of all diagnoses, medications, pro-
cedures and lab tests in real-world dataset is about 5000 and
they seldom change. This number is relatively small and their
similarities can be easily stored in the memory. Another fact
is that new coming patients/visits are never isolated, as they
always appear with some medical features. In other words,
there are always “patient/visit-medical code” links in the test
set. Therefore, using these two properties, we can use HSGNN
to infer new patients/visits without re-train the model.

After the training step, we obtain a well-trained Ameta in
HSGNN. Since Ameta contains medical relations, it can be
used in the inference step. As shown in Fig. 3, when we
dissect Ameta, all edges in Ameta can be grouped into three
categories.

• Medical code-medical code edges. Edges between two
medical codes such as “diagnosis-medication” relation
reveals the relationship between medical factors. Weights
of these edges keep stable after training and can be reused
in the inference step.

• Human-medical code edges. These edges represent the
relationship between a human (patient/visit node) and
a medical code. Since human nodes are different in
training and testing step, weights of these edges cannot
be reused. However, we can calculate these weights in
the preprocessing step using testing data under “human -
· · · - medical code” meta-paths.

• Human-human edges. Weights in this part is set to 0s
since there is no way to calculate them. The volume of
testing data is relatively small and we still have other
edges available, so these 0s won’t interfere prediction.

After obtaining a new Ameta for testing set, we can use
general GNNs to predict testing results. More details about
this part will be provided in the experiment section.

IV. EXPERIMENTS

In this section, we conduct experiments on the public
MIMIC dataset and show the superiority of HSGNN over other
baselines.

A. MIMIC-III Dataset

MIMIC [37], [38] is a publicly available dataset consisting
of health records of 46,520 intensive care unit (ICU) patients
over 11 years. Table II shows the statistics of the graph we
construct and Fig. 4 shows the structure of MIMIC-III dataset.

Patient Visit

Diagnosis

Micribiology
test

Procedure

Lab test

Medication

Symptom

Demographics

MeSH

Fig. 4: The data schema of the MIMIC-III network.

TABLE II: Node statistics for the MIMIC-III network.

MIMIC-III # of code Avg # of the code
(for each visit)

Patient 46,520 –
Visit 58,976 –

Diangosis 203 11.20
Procedure 157 4.65

Medication 304 23.18
Lab tests 480 27.55

Microbiology tests 258 0.94
Symptoms 324 19.06

Raw MIMIC-III data consists of 17 tables, including demo-
graphics, laboratory test results, microbiology test results, di-
agnoses, medications, procedures, medical notes, etc. For each
patient and visit, there is a unique ID to track its corresponding
information through tables. There are extra tables recording the
patient-visit relations, demographics and data dictionaries as
well. To build a clean and efficient heterogeneous graph based
on these data, we mainly do the following things.

a) data disambiguation: There are more than 1000 kinds
of medications in the original dataset. Most of them are differ-
ent abbreviations or preparations of the same medicine. In the
experiment, we disambiguate these medicines by comparing
the most common strings in the name of medications and
finally extract 304 most common medications.

b) continuous variables bucketization: Lab test results
are mostly continuous values. Therefore we need to bucketize
them into discrete variables and integrate these variables into
the graph. Some of the entries in the lab test table in MIMIC-
III contain a “N/A” flag, indicating whether the test result is
normal or abnormal. We then set up two nodes for this lab
test representing “normal” and “abnormal”. For other lab tests
that do not have such an flag, we use the quartiles of the lab
test to bucketize the outliers from common values. Some data
engineering works are also conducted in this step to make sure
we get sensible thresholds.

c) medical notes preprocessing: There are no symptom
records for patients in MIMIC-III, but there exist medical
nodes for each visit. Medical notes contain rich diagnostic
information but are difficult to process since they are free
texts. To extract diagnostic information (symptoms) from them
without data leakage, we use an extra knowledge graph MeSH

TABLE III: Overall top-k precision of all baselines and HSGNN variants on MIMIC-III dataset.

Model Visit-level precision@k Patient-level precision@k

5 10 15 20 5 10 15 20

Dipole 0.5929 0.7426 0.7942 0.7540 0.6393 0.7359 0.7271 0.7239
KAME 0.6107 0.7475 0.7967 0.7562 0.6472 0.7565 0.7530 0.7288
HeteroMed 0.5893 0.7314 0.7866 0.7670 0.6285 0.7255 0.7171 0.7193
MAGNN 0.6142 0.7471 0.8092 0.7693 0.6501 0.7585 0.7548 0.7394
HAN 0.6135 0.7464 0.8083 0.7691 0.6494 0.7582 0.7550 0.7386
HetGNN 0.6124 0.7456 0.8070 0.7689 0.6489 0.7580 0.7452 0.7379
GCT 0.6297 0.7503 0.8107 0.7703 0.6633 0.7592 0.7685 0.7384

HSGNN 0.6426 0.7658 0.8189 0.7736 0.6778 0.7613 0.7702 0.7456
simi-HSGNN 0.6123 0.7396 0.8034 0.7689 0.6488 0.7481 0.7452 0.7479
sum-HSGNN 0.6412 0.7630 0.8129 0.7683 0.6724 0.7597 0.7696 0.7384
HSGNN-m 0.6410 0.7638 0.8175 0.7667 0.6752 0.7740 0.7723 0.7429

(Medical Subject Headings)1 to extract meaningful structural
diagnostic information from free text. We extract entries
“medications on admission”, “family history”, “impression”,
“chief complaint”, “physical examination on admission” and
“history” from the medical notes, and then match words in
these entries to MeSH. After that we use these matched
keyworks together with its connections in MeSH to help
building the heterogeneous MIMIC-III network. By doing
this we extract keywords from the diagnostic texts while
incorporating external knowledge graph into our graph.

d) other medical codes: MIMIC-III uses ICD-9-PC and
ICD-9 ontology to represent all procedures and diagnoses.
International Classification of Diseases (ICD) is a medical
ontology which is widely used in healthcare. In these ontolo-
gies, diagnoses and procedures are organized in hierarchical
structures and the first several digits denote a high-level
concept of the codes. In this case, we choose the first two digits
for procedure codes and the first three digits for diagnosis
codes to predict. We then select the most commonly existing
codes as nodes in our graph and dismiss other rare codes.

B. Baselines

To demonstrate the advantage of HSGNN, we select three
medical predictive models and three graph neural networks as
our baseline.

• Dipole [10]. Dipole uses bidirectional recurrent neural
networks and attention mechanism to make predictions.
In this experiment, we use patient conditions at different
times in one visit to make the visit-level prediction, and
use information of different visits to make patient-level
prediction.

• KAME [14]. KAME learns to predict patients’ health
situation. It incorporates medical knowledge graph, and
utilizes attention mechanism to make accurate predic-
tions. We leverage the MeSH ontology as the knowledge
graph to run this model. It is fair to compare KAME and

1https://meshb.nlm.nih.gov/treeView

our proposed HSGNN becuase they all make use of the
same ontology although in different settings.

• HeteroMed [39]. HeteroMed is the first approach using
HIN to process EHR. It exploits meta-paths and employs
a joint embedding framework to predict diagnosis for
patients. We use the same graph structure on this model
as HSGNN.

• MAGNN [20]. MAGNN proposes intra-metapath aggre-
gators and inter-metapath aggregators to make inductive
predictionson heterogeneous graphs. We use the same
graph structure and meta-paths on this model as HSGNN.

• HetGNN [19]. HetGNN is a heterogeneous graph neural
network that introduces a random walk to sample a fixed
size of heterogeneous neighbors and leverages a neural
network architecture with two modules to aggregate fea-
ture information of those sampled neighboring nodes

• HAN [18]. HAN is a heterogeneous graph neural network
based on hierarchical attention, including node-level and
semantic-level attentions to learn the importance between
a node and its metapath based neighbors and the impor-
tance of different meta-paths.

• GCT [15]. GCT uses graph convolutional transformers
to jointly learn the hidden structure of EHR while per-
forming prediction tasks on EHR data. GCT uses data
statistics to guide the structure learning process. In the
experiments, we use the data schema mentioned above to
generate its pre-training weights.

Meanwhile, we also conduct experiments on following five
variants on HSGNN to find the best architecture.

• HSGNN Model we proposed in this paper, using concate-
nation operation to derive Fmeta (Eq. 5 9) and aggregated
attentional sum to derive Ameta (Eq. 7 4). Then a one-
layer GCN is applied on Fmeta and Ameta to make final
predictions.

• simi-HSGNN Use PathCount but not SPS to derive A.
This is to show the efficiency of SPS.

• sum-HSGNN Use simply weighted sum to derive Amate

(Eq. 2). Then a one-layer GCN is applied on F and

https://meshb.nlm.nih.gov/treeView

80% 70% 60%
Training set percentage a%

0.70

0.72

0.74

0.76

0.78

0.80
Pr

ec
is

io
n@

10

Visit-level precision.

80% 70% 60%
Training set percentage a%

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Te
st

in
g

tim
e

in
 s

ec
.

Visit-level time.

80% 70% 60%
Training set percentage a%

0.60

0.65

0.70

0.75

0.80

Pr
ec

is
io

n@
10

Patient-level precision.

80% 70% 60%
Training set percentage a%

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Te
st

in
g

tim
e

in
 s

ec
.

Patient-level time.
Fig. 5: Precision and running time of Quick Inference compare with traditional train and test procedure. (Dark green denotes training,

brown denotes testing and purple denoted quick reference.)

Ameta to make final predictions. This is to compare
HSGNN with a simpler model to show the efficiency of
splitting EHR graph into multiple subgraphs.

• HSGNN-m Use mean aggregator to derive Amate. Other
settings are the same as HSGNN. This variant is to show
the effect of different aggregation functions.

C. Problem Introduction

Diagnosis prediction can be viewed as a multi-label clas-
sification problem where we try to predict multiple possible
diagnoses for the patients or visits. We conduct both patient
level prediction and visit level prediction on the dataset. As for
patient level prediction, only diagnoses existing on all visits of
this patient would be counted as the diangosis of the patient.
We then split training and testing set by removing the cor-
responding “visit-diagnosis ” edges in the graph. Then, since
medication and procedure can be determined by diagnosis,
these edges are also removed to prevent data leakage.

D. Experiment Settings

In the experiment, we use the concatenation of feature vec-
tors from different sources as the features of the visits, and then
we use them for all baseline models. For each experiment, we
use 10-fold cross validation. Training, validation and testing
sets are with a 7 : 1 : 2 ratio. Our method is implemented by
Tensorflow 2.0 and Python 3.6, and tested on an machine with
32G RAM and 2 NVIDIA GeForce RTX 2080 Ti GPU. To
evaluate the quality of prediction, we use precision at top-k
as the metric. We set the value of k as 5, 10, 15, 20.

E. Results of diagnosis prediction

1) Comparison with other baselines: Table III displays the
performance of all comparable models on MIMIC-III. In the
table, HSGNN and its variant HSGNN-m. outperform all other
baselines. We conduct diagnosis prediction task the MIMIC-III
dataset. Generally, there are about 10 diagnoses for each visit
and 4 visits for each patient. Therefore, when k increases,
the precision may either increase or decrease. The accuracy
of a model approximately reach its maximum when k = 10
for patient diagnosis prediction and k = 15 for visit level

prediction. This is also why we choose maximum k = 20.
Therefore, if we focus on the column of k = 15 of the visit-
level prediction and k = 10 of patient-level prediction, we can
find HSGNN improve 0.7% and 1.4% on both tasks.

All baselines, together with HSGNN can be classified into
three categories: RNN models, homogeneous graph models
and heterogeneous graph models. From the results we can
infer that homogeneous graph models (KAME and GCT)
perform better than RNN models (Dipole), and heterogeneous
graph approaches (MAGNN and HSGNN) perform better than
homogeneous approaches. It demonstrates the effectiveness of
considering structural information when making predictions.
Compared with homogeneous graphs, heterogeneous graphs
carry more information and thus can achieve more improve-
ment when applied to the model.

Among all baseline models, GCT achieves the best perfor-
mance even if it uses homogeneous graph. Note that a common
design of GCT and HSGNN is that they both use trainable
weights and construct a virtual graph in the model. Therefore,
we can infer that compared with using the original input graph,
a virtual graph constructed in the model can improve the per-
formance of GNN. Since our proposed HSGNN outperforms
GCT, our model can learn a more accurate graph structure
in the model. This phenomenon is because our model uses
the heterogeneous graph as input and considers the difference
between meta-paths.

2) Comparison among HSGNN variants: We also test some
variants of HSGNN to find the best architecture of HSGNN
while making some ablation studies. The first variant we
compare with is simi-HSGNN, which uses the PathCount
as similarity measure but not SPS. By doing so, HSGNN
becomes almost equivalent to HAN [18] and its performance
can be viewed as the performance of HAN. Simi-HSGNN
performs worse than HSGNN for around 2% on both tasks,
showing that using normalize similarity measure SPS is an
essential way to achieve better results.

Another variant considered is sum-HSGNN. Compared
with HSGNN, sum-HSGNN is its simplified version since
it contains less parameters in the model and is faster to
train. Nevertheless, the performance of sum-HSGNN doesn’t

10 5 0 5 10 15

10

5

0

5

10

DeepWalk.
10 0 10 20 30

10

0

10

20

30

metapath2vec.
10 5 0 5 10

10

5

0

5

10

GRAM.
5 0 5 10 15 20

10

5

0

5

10

HSGNN.
Fig. 6: T-SNE scatterplots of diagnoses trained by HSGNN, DeepWalk, metapath2vec and GRAM.

decrease a lot because of its simplicity and sum-HSGNN
outperforms all other variants and baseline models except HS-
GNN and HSGNN-m. The reason may be that sum-HSGNN
still preserves the mechanism of learning a trainable virtual
graph.

HSGNN-mm shows the impact of different node aggrega-
tors on the model performance. However, we discover the in-
fluence of aggregators is limited if the size of embeddings are
kept constant. Therefore, we choose the mean aggregator, the
one which is easier to implement and can achieve satisfactory
performance, to be compared in the experiments.

F. Performance of Quick Inference
To compare the efficiency and the effectiveness of our quick

inference method (III. C) to traditional testing step, we design
the following experiment to evaluate its performance. Firstly,
we choose a% of data randomly from the dataset as training
and validation samples. Then we split the remaining 1 − a%
samples equally for traditional testing and quick inference.
Secondly, in the preprocessing step, both training samples
and testing samples are used to generate the graph. Then this
graph is fed forward to our model. Finally, when the model
is well-trained, we use the quick inference method to predict
the remaining (1− a%)/2 samples, and compare its precision
and running time to the traditional testing procedure. In this
experiment, we set a = 80%, 70%, 60% respectively.

Fig. 5 shows the result of training performance, testing
performance and the quick inference performance under visit-
level and patient-level prediction. For each task, we evaluate
the precision@10 of training samples, testing samples and
quick inference samples after the model is well-trained. We
also measure the time for testing samples and quick reference
samples to get the results. We do not measure the time of
training procedure because it depends on parameters such as
learning rate.

From Fig. 5 we can discover that the quick inference
accuracy is only slightly lower then the traditional testing
precision on both visit prediction and patient prediction tasks.
Nevertheless, the time of getting quick inference results is
much shorter than getting a traditional testing result. This
is because quick inference can get Ameta without forward-
propagation, and then get results simply through a one-layer
graph neural network.

With a% decreasing, all the training, testing and quick
inference precision decreases. It is because of the lack of

training samples, making the model under-fitting. On the other
hand, the decrease of training samples means the number of
testing samples and quick inferences are increasing. Therefore,
the number of inference is increasing.

G. Representation Learning with External Knowledge

HSGNN can learn representations for nodes. Since many
models such as GRAM can learn high quality representations
by integrating medical ontologies, we try to test the ability of
HSGNN to learn informative representations on the same task.
In this experiment, we apply ICD-9 ontology on both GRAM
and HSGNN to let them learn representations for diagnoses.
Here are we choose nine categories in ICD-9 ontology to
build the graph. Since diagnoses in the same category are
directly connected and are more relative to each other, an ideal
result is that all diagnosis nodes belong to the same category
can form a cluster in visualization. To train HSGNN in an
unsupervised way, we apply a loss like [27] which maximizes
the dot product of diagnoses in the same category. Fig. 6
shows the result of representation learning by ploting the t-
SNE result [40]. Here we compare the results of HSGNN with
GRAM, DeepWalk [41] and metapath2vec [42]. In Fig. 6, the
colors of the dots represents the ICD-9 categories. According
to the visualization, we can prove that HSGNN can produce
representations with high quality since it forms clear clusters
for each category.

V. CONCLUSION

EHR data is highly heterogeneous with high-dimensional
temporal data. To model the intrinsic complexity of EHRs
and utilize external medical knowledge, we propose HSGNN
framework to learn high quality representations while generat-
ing predictions. HSGNN accepts similarity matrices as inputs
and use the attention mechanism to measure the impact of each
meta-paths. In the experiment section, we conduct diagnosis
prediction task on MIMIC-III dataset, proving the superiority
ability of HSGNN over baseline models. The visualization
of representations shows the ability of HSGNN in generating
reasonable representations both for diagnosis and patients. The
superiority of HSGNN is mainly because it can make use of
external medical ontologies together with both temporal and
structural information.

ACKNOWLEDGMENT

The corresponding author is Hao Peng. This work is
supported by Key Research and Development Project of
Hebei Province (No. 20310101D), NSFC No.62002007 and
No.62073012, and in part by NSF under grants III-1763325,
III-1909323, IIS-1763365 and SaTC-1930941.

REFERENCES

[1] T. Fu, T. N. Hoang, C. Xiao, and J. Sun, “DDL: deep dictionary learning
for predictive phenotyping,” in IJCAI, 2019, pp. 5857–5863.

[2] T. Bai, A. K. Chanda, B. L. Egleston, and S. Vucetic, “Ehr phenotyping
via jointly embedding medical concepts and words into a unified vector
space,” BMC medical informatics and decision making, vol. 18, no. 4,
p. 123, 2018.

[3] X. S. Zhang, F. Tang, H. H. Dodge, J. Zhou, and F. Wang, “Metapred:
Meta-learning for clinical risk prediction with limited patient electronic
health records,” in SIGKDD, 2019, pp. 2487–2495.

[4] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel, “Learning to diagnose
with lstm recurrent neural networks,” arXiv preprint arXiv:1511.03677,
2015.

[5] J. Shang, C. Xiao, T. Ma, H. Li, and J. Sun, “Gamenet: Graph augmented
memory networks for recommending medication combination,” in AAAI,
2019, pp. 1126–1133.

[6] Z. Che and Y. Liu, “Deep learning solutions to computational
phenotyping in health care,” in ICDM Workshops. IEEE Computer
Society, 2017, pp. 1100–1109. [Online]. Available: https://doi.org/10.
1109/ICDMW.2017.156

[7] X. Cai, J. Gao, K. Y. Ngiam, B. C. Ooi, Y. Zhang, and X. Yuan, “Medical
concept embedding with time-aware attention,” in Proceedings of the
27th International Joint Conference on Artificial Intelligence, 2018, pp.
3984–3990.

[8] E. Choi, M. T. Bahadori, E. Searles, C. Coffey, M. Thompson, J. Bost,
J. Tejedor-Sojo, and J. Sun, “Multi-layer representation learning for
medical concepts,” in SIGKDD, 2016, pp. 1495–1504.

[9] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. F. Stewart,
“RETAIN: an interpretable predictive model for healthcare using reverse
time attention mechanism,” in NeurIPS, 2016, pp. 3504–3512.

[10] F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao, “Dipole: Diagnosis
prediction in healthcare via attention-based bidirectional recurrent neural
networks,” in SIGKDD, 2017, pp. 1903–1911.

[11] Z. C. Lipton, D. C. Kale, C. Elkan, and R. C. Wetzel, “Learning to
diagnose with LSTM recurrent neural networks,” in 4th International
Conference on Learning Representations, ICLR 2016, 2016.

[12] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun,
“Doctor AI: predicting clinical events via recurrent neural networks,”
in Proceedings of the 1st Machine Learning in Health Care, MLHC
2016, vol. 56. JMLR.org, 2016, pp. 301–318.

[13] M. Aczon, D. Ledbetter, L. V. Ho, A. M. Gunny, A. Flynn, J. Williams,
and R. C. Wetzel, “Dynamic mortality risk predictions in pediatric crit-
ical care using recurrent neural networks,” CoRR, vol. abs/1701.06675,
2017.

[14] F. Ma, Q. You, H. Xiao, R. Chitta, J. Zhou, and J. Gao, “KAME:
knowledge-based attention model for diagnosis prediction in healthcare,”
in CIKM, 2018, pp. 743–752.

[15] E. Choi, Z. Xu, Y. Li, M. W. Dusenberry, G. Flores, E. Xue, and A. M.
Dai, “Learning the graphical structure of electronic health records with
graph convolutional transformer,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence. AAAI Press, 2020.

[16] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, “GRAM:
graph-based attention model for healthcare representation learning,” in
KDD, 2017, pp. 787–795.

[17] E. Choi, C. Xiao, W. F. Stewart, and J. Sun, “Mime: Multilevel medical
embedding of electronic health records for predictive healthcare,” in
NIPS 2018, 2018, pp. 4552–4562.

[18] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web
Conference, WWW 2019. ACM, 2019, pp. 2022–2032.

[19] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2019, pp. 793–803.

[20] X. Fu, J. Zhang, Z. Meng, and I. King, “MAGNN: metapath aggregated
graph neural network for heterogeneous graph embedding,” in WWW
’20: The Web Conference 2020. ACM / IW3C2, 2020, pp. 2331–2341.

[21] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks,” PVLDB,
vol. 4, no. 11, pp. 992–1003, 2011.

[22] Y. Shi, P. Chan, H. Zhuang, H. Gui, and J. Han, “Prep: Path-based
relevance from a probabilistic perspective in heterogeneous information
networks,” in Proceedings of the 23rd ACM SIGKDD. ACM, 2017,
pp. 425–434.

[23] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence. AAAI Press, 2018,
pp. 3538–3545.

[24] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks from
the topological view,” in AAAI 2020. AAAI Press, 2020, pp. 3438–
3445.

[25] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.

[26] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR. OpenReview.net, 2017.

[27] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[28] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing
graph neural network-based fraud detectors against camouflaged fraud-
sters,” in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, 2020, pp. 315–324.

[29] H. Peng, J. Li, Q. Gong, Y. Song, Y. Ning, K. Lai, and P. S. Yu, “Fine-
grained event categorization with heterogeneous graph convolutional
networks,” IJCAI, 2019.

[30] Z. Liu, X. Li, Z. Fan, S. Guo, K. Achan, and P. S. Yu, “Basket
recommendation with multi-intent translation graph neural network,”
arXiv preprint arXiv:2010.11419, 2020.

[31] X. Li, M. Zhang, S. Wu, Z. Liu, L. Wang, and P. S. Yu, “Dynamic graph
collaborative filtering,” in ICDM, 2020.

[32] Y. Gao, L. Xiaoyong, P. Hao, B. Fang, and P. Yu, “Hincti: A cyber threat
intelligence modeling and identification system based on heterogeneous
information network,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

[33] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, vol. abs/1710.10903,
2018.

[34] Y. Cao, H. Peng, and S. Y. Philip, “Multi-information source hin for
medical concept embedding,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 2020, pp. 396–408.

[35] C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu, “A survey of
heterogeneous information network analysis,” IEEE Trans. Knowl.
Data Eng., vol. 29, no. 1, pp. 17–37, 2017. [Online]. Available:
https://doi.org/10.1109/TKDE.2016.2598561

[36] L. Zhao and L. Akoglu, “Pairnorm: Tackling oversmoothing in gnns,” in
8th International Conference on Learning Representations, ICLR 2020,
2020.

[37] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet: components of a
new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e215–e220, 2000.

[38] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii, a
freely accessible critical care database,” Scientific data, vol. 3, p. 160035,
2016.

[39] A. Hosseini, T. Chen, W. Wu, Y. Sun, and M. Sarrafzadeh, “Heteromed:
Heterogeneous information network for medical diagnosis,” in CIKM,
2018, pp. 763–772.

[40] P. E. Rauber, A. X. Falcão, and A. C. Telea, “Visualizing time-dependent
data using dynamic t-sne,” in EuroVis, 2016, pp. 73–77.

[41] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning of
social representations,” in SIGKDD, 2014, pp. 701–710.

[42] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in SIGKDD, 2017,
pp. 135–144.

https://doi.org/10.1109/ICDMW.2017.156
https://doi.org/10.1109/ICDMW.2017.156
https://doi.org/10.1109/TKDE.2016.2598561

	Introduction
	Related Works
	Graph Neural Networks
	GNN-based EHR analysis
	Heterogeneous Graph Neural Networks
	Over-smoothing and Node Visibility

	Methods
	Similarity Subgraph Construction via Meta-path
	Heterogeneous Similarity Graph Neural Network
	Simply Weighted Sum
	Attention Sum
	Aggregated Attention Sum

	Quick Inference When New Records Coming

	Experiments
	MIMIC-III Dataset
	Baselines
	Problem Introduction
	Experiment Settings
	Results of diagnosis prediction
	Comparison with other baselines
	Comparison among HSGNN variants

	Performance of Quick Inference
	Representation Learning with External Knowledge

	Conclusion
	Acknowledgment
	References

